An Efficient Algorithm for Unconstrained Optimization

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Efficient Conjugate Gradient Algorithm for Unconstrained Optimization Problems

In this paper, an efficient conjugate gradient method for unconstrained optimization is introduced. Parameters of the method are obtained by solving an optimization problem, and using a variant of the modified secant condition. The new conjugate gradient parameter benefits from function information as well as gradient information in each iteration. The proposed method has global convergence und...

متن کامل

AN EFFICIENT METAHEURISTIC ALGORITHM FOR ENGINEERING OPTIMIZATION: SOPT

Metaheuristic algorithms are well-known optimization tools which have been employed for solving a wide range of optimization problems so far. In the present study, a simple optimization (SOPT) algorithm with two main steps namely exploration and exploitation, is provided for practical applications. Aside from a reasonable rate of convergence attained, the ease in its implementation and dependen...

متن کامل

A new hybrid conjugate gradient algorithm for unconstrained optimization

In this paper, a new hybrid conjugate gradient algorithm is proposed for solving unconstrained optimization problems. This new method can generate sufficient descent directions unrelated to any line search. Moreover, the global convergence of the proposed method is proved under the Wolfe line search. Numerical experiments are also presented to show the efficiency of the proposed algorithm, espe...

متن کامل

Firefly Algorithm for Unconstrained Optimization

Meta-heuristic algorithms prove to be competent in outperforming deterministic algorithms for real-world optimization problems. Firefly algorithm is one such recently developed algorithm inspired by the flashing behavior of fireflies. In this work, a detailed formulation and explanation of the Firefly algorithm implementation is given. Later Firefly algorithm is verified using six unimodal engi...

متن کامل

An Algorithm for Unconstrained Quadratically Penalized Convex Optimization

A descent algorithm, “Quasi-Quadratic Minimization with Memory” (QQMM), is proposed for unconstrained minimization of the sum, F , of a non-negative convex function, V , and a quadratic form. Such problems come up in regularized estimation in machine learning and statistics. In addition to values of F , QQMM requires the (sub)gradient of V . Two features of QQMM help keep low the number of eval...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical Problems in Engineering

سال: 2015

ISSN: 1024-123X,1563-5147

DOI: 10.1155/2015/178545