An Efficient Algorithm for Unconstrained Optimization
نویسندگان
چکیده
منابع مشابه
An Efficient Conjugate Gradient Algorithm for Unconstrained Optimization Problems
In this paper, an efficient conjugate gradient method for unconstrained optimization is introduced. Parameters of the method are obtained by solving an optimization problem, and using a variant of the modified secant condition. The new conjugate gradient parameter benefits from function information as well as gradient information in each iteration. The proposed method has global convergence und...
متن کاملAN EFFICIENT METAHEURISTIC ALGORITHM FOR ENGINEERING OPTIMIZATION: SOPT
Metaheuristic algorithms are well-known optimization tools which have been employed for solving a wide range of optimization problems so far. In the present study, a simple optimization (SOPT) algorithm with two main steps namely exploration and exploitation, is provided for practical applications. Aside from a reasonable rate of convergence attained, the ease in its implementation and dependen...
متن کاملA new hybrid conjugate gradient algorithm for unconstrained optimization
In this paper, a new hybrid conjugate gradient algorithm is proposed for solving unconstrained optimization problems. This new method can generate sufficient descent directions unrelated to any line search. Moreover, the global convergence of the proposed method is proved under the Wolfe line search. Numerical experiments are also presented to show the efficiency of the proposed algorithm, espe...
متن کاملFirefly Algorithm for Unconstrained Optimization
Meta-heuristic algorithms prove to be competent in outperforming deterministic algorithms for real-world optimization problems. Firefly algorithm is one such recently developed algorithm inspired by the flashing behavior of fireflies. In this work, a detailed formulation and explanation of the Firefly algorithm implementation is given. Later Firefly algorithm is verified using six unimodal engi...
متن کاملAn Algorithm for Unconstrained Quadratically Penalized Convex Optimization
A descent algorithm, “Quasi-Quadratic Minimization with Memory” (QQMM), is proposed for unconstrained minimization of the sum, F , of a non-negative convex function, V , and a quadratic form. Such problems come up in regularized estimation in machine learning and statistics. In addition to values of F , QQMM requires the (sub)gradient of V . Two features of QQMM help keep low the number of eval...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical Problems in Engineering
سال: 2015
ISSN: 1024-123X,1563-5147
DOI: 10.1155/2015/178545